
EVEL
~~

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

‘8
~ LiJ

‘U-

UNWERS1TY OF MARYLAND
• COLLEGE PARK~ ISAND

D D C20742

~ JUL 24 1~T9

[P~ TR13tmQN STATEMENT A l IIII~~
[
~1TErT6I~J4 1 Appzov.d fcr public r.1.a.& DDi,aiibutjon UDlimft d I

11

—- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~•.: •~~~- -

LEVa (/

:~~~‘ 2~ ~~
•~ ~

r
(

‘ TR— 646 Mareb 1978
DAAG— 53—76C -013 8

~~~J~A ~YSTE!4 FOR cONTROL STRUCTURE ’ / , /
( IMP~~J4E~ TATION FOR IMAGE t JNDERSTANDING : 

_ _ _ _ _

____________ ~
‘ 

Mart in/ ~ierTflafl

Un~ 1flounced H
j on 

-i
BY_____________ 7

A ’:•3.1l 1L’? ,’(?r

~~t C~?3Ci3j

ABSTRACT

A data base system with inferencing capabilities is

described. This system , developed by C. Rieger , is investi-
gated as a tool in support of control structure implementation

for image understanding .

D D~’~
~~*[JUi.. 2•~ ~~

tiL~I~~
j
~i •~~~~~~ -

:.

~

_ _ _  U
The supp~~~~of the U. S. .,A~~~y Night~ViaiQfl Laboratory under

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
orderiuu.3Z~6~ is gratefully

4 acknowle e . •

DISTTUBU~ 2N ST~~~~ i ,

Approved fc’r pubH~ r’~ va9a.
Distr ibution ~ nhmtt.4

-
~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _

;

~~~~~~~~~~~~

g ‘• l.I
- ~~ —~~~~~--~~~~—- -—~~~~~~~~~~~~~~~~~~ -•

- —1


~~~~; -;~~~~~~~ _ _ _ _ _ _ _ _ _

1. Introduction

INFDB is a data base system which supports an

inferencing capability . This document describes what

is available in the system and how to use it in the context

of image understanding and scene analysis. The intent here

is to use this software as the basis for a higher level con-

trol structure for an image understanding system. The basic

data base system (described in Section 2) offers the capa-

bility of storing , fetching , and erasing LISP n-tuples. The

inferencing capability is provided by the spontaneous computa-

tions which are described starting in Section 3. This

spontaneous computation system was initially developed and

implemented by C. Rieger. The present document describes

the user-level capabilities and functions of the system .

To obtain a more extensive description of the system , together

with details of implementation and theoretical issues , see

reference (l].*

The data base and spontaneous computation system was

initially implemented to run on the UNIVAC 1108 and UNIVAC

• 
1100/40 machines. R. Haar [21 has modified the system to

run in ULISP [3] on a PDP 11/45 under the UNIX operating

system.

~~ *Certain portions of this text have been copied verbatim from
reference [11 with the permission of the author.

4 

4 ~~~
. — * _________________ -

_________ — --



2. The basic data base

Each item in the data base consists of a well-formed

nested n—tuple , i.e., a LISP list where the list elements

can be other lists. (Cyclic references are prohibited .) A

nested n—tup le <nfl> is defined as:

<nn> : <constant>I<variable>l (<nn> .. .<nn> )

<constant> :=  <LISP atom>

(variable> :=  — < L I S P  atom>

There are three user—level data base functions which

serve to manipulate items:

($STORE <x>), ($FETCH <p>), ($ERA SE < p > ) .

$STORE accepts an arbitrary LISP nested n-tuple ‘~x:’ and

inserts it into the data base. $Fi~TCU accepts a pattern ,

<p> , which possibly contains variables and locates all items

in the data base that match <p> by returning pointers to

these items. A side effect of locating a matching item is

a binding list specifying how each variable in the pattern

must be assigned in order for the match to exist. $ERASE

accepts patterns siiailar to those accepted by $FETCII, and

erases (deletes from the data base) any items that match

the erase pattern.

Examples of these three functions are:

($STORE ‘ (TANI( TEMPERATURE HOT))

($STORE ‘ (NEAR TREE (TANK TEMPERATURE HOT))

‘4

—-



- T :.. ~~~~
. __________________________________________

($STORE ‘ ( A  (B C) u. ( E ) ) ) )

( $FETCH ‘ (TAN K TEMPERATURE HOT ) )

($FETCH ‘ ( A  ( -X C) -Y •( ( E )  ~) )

($ERASE ‘ (TANK -x -Y))

($ERASE ‘ (NEAR -X (TANK TEMr~I~ATuRE -Y))

Note that a variable is distinguished from a constant

by having a hyphen prefix (i.e., the first character of the

atom is a hyphen). Variables with the same name must be

bound to the same object when a match is attempted . Thus

($FETCH ‘ (TANK -X -Y))

will bind -X to TEHPERATURE and -1 to HOT, while

($FETCH ‘ (TANK -X -X))

will return NIL since both of the objects to be bound would

• have to be the same in order for the FETCH to succeed .

_ -i
~~~


r- “—
~ —~~~~ ~~~~~

— - — - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ U~iTJT]I r—~
- :~

3. ~j~ontaneous Computation

The data base just described is used as the groundwork

for the demon system . A demon in this system is called a

Spontaneous Computation (SC).

An SC has two parts , an activation pattern and a body .

The activation pattern is a description of the situation or

class of situations to which the SC will react , i.e.,

spontaneously run itself. The body is the computation it

performs. The activation pattern is also called the trigger

p~ttern, since the satisfaction of this pattern by a given

situation will trigger the computation in the body of the SC.

The trigger pattern consists of nested n-tuples . As an

example , consider a trigger pattern which would react to

patterns of the form : ‘ (Activate me when) a tank of any

temperature i~ near anything .” This could be expressed as

(i4EAR -X (TANK TEMPERATURE - Y ) )  -

The following pattern

(NEA R TREE (TANK TEMPERATURE HOT))

would match the trigger pattern , setting -x to TREE and -?

to HOT.

The general SC trigger pattern , <tp> , is defined as

follows :

<tp> : = <assoc>I<computable>~ <complex>

<assoc> : = (+ <effort> <nn>)

• • • 
• 

•

A ~~~~~~~~~ 
• 

• 
, •. -. -~•

VP ~~~~ 
L,



<computable> := <LISP-S-expression>

<complex> := (AND <tp> .. .<tp>)

(OR <tp> . . . <tp>)
( (ANY <tp> . - . <tp>)

where <nn> is a nested n—tuple as defined previously.

• The associative part , <assoc> , of a complex trigger

pattern will react to activity (i.e., patterns) in an arena

of events. It is marked with a “ -4- ” as in:

(+ 1 (TANK TEi4PERATURE -X)).

1~ny portions of the trigger pattern not so marked will be

interpreted as LISP computables. The computable will generally

consist of any LISP function call. It will serve to place a

restriction on the variables in the associative patterns.

A complex trigger pattern consists of associative and

computable parts built from the relations AND , OR , and ANY .

An AND condition must have all of its parts bound in a

consistent way in order for the AND relation to be true. In

an OR relation , at least one of the OR components must be

• ~
. true , and any variables which become bound will reflect the

bindings of the first component of the OR found to be true.
-i

In an ANY relation , all of the ANY components are tested for

truth , and as many bindings as possible are made .

The (+ <effort> <nfl>) forms will interface with the

system ’s deductive and data base components (as will be

4

if . - 
_____— —— ~~~~•—- - —

— J

~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

explained later). The (effort> field , an S-expression that

evaluates to an integer , denotes the maximum acceptable

level of effort to be expended if the form were to be re-

garded as a data base query (i.e., deduction) . “Effort” is

defined as the number of raw data base fetches made .

The following form for a deductive query also exists :

(— <effort> <nn>) .

These are identical to “ + “ forms in all respects except that

they cannot initiate the running of the SC directly, i.e.,

trigger it. They merely express condi tions that must be

true before the SC’s computation can be activated .

Let us apply the complex trigger syntax to express the

situation that “the tank whose temperature is the same as

that of the truck is near something which is green:”

(AND(+ 1 (NEAR -X (TANK TEMPERATURE -Y)))

(+ 1 (-X COLOR GREEN))

(+ 1 (TRUCK TEMPERATURE -1))).

All of the parts of this trigger pattern are associative .

Whenever any one of its components is seen in the arena of

~~tivity, an attempt will be made to verify each other part

of the pattern , but only one unit of effort can be expended *

for each additional part , i.e., the deductive component can

use only one data base fetch apiece .

If we wanted the trigger to react only to the “primary ”

idea , i.e., “the tank is near something ,” we would make the

4

~~~~~~~~~~~~~~~~ ~~~~
- — —  

~~~~~~~~~~~~~~~~ - • -• - ______

I - - • - - . .,
•

— - - - -
• 1 , - •. ~~ f —

-. — ________
___ — —

last two components non-associative :

(AND (-f 1 (NEAR -X (TANK TEMPERATURE -Y)))

(- 1 (-X COLOR GREEN))

(- 1 (TRUCK TEMPERATURE -Y)))

To illustrate a pattern which includes computables , let

us create a pattern which expresses that “something big is

near enough to a bush to be less than 3 units from it:”

(AN D (+ 1 (NEAR -X BUSH))

(+1 (SIZE —X BIG))

(LESSP (DIST -X BUSH) 3))

where DIST is a function which retrieves the coordinates of

the positions of its two arguments and calculates the dis-

tance. Here anything which is near a bush or which is big

• causes the distance between the object and the bush to be

compared to the number 3, succeeding if the distance is

less than 3.

I

_
_

— - —

— ...,
~~~~~ ~~~~~ ~~~

.‘ 
~~ 

‘
~ ~ ~Z 1  *IA. ~_.-n---_—- •-_. ~ 4~~~~~~’4 p-~~~~~~~~~~ 1



4. Trigger trees

Generally there will he a large number of SCs in a

given application . The SCs can be grouped together into

structures called trigger trees. In this way , each popula—

tion of SCs will inhabit its own trigger tree. An SC can

be included as part of a given trigger tree (i.e., “planted”

into the trigger tree) by the function $PLANT :

($PLANT <tp > <SC—bo~v> <tt>) ,

i.e., “plant in trigger tree <tt> an SC whose trigger pattern

is <tp> and whose body is <SC-body> . If the trigger tree

<tt> does not exist, it will be created by $PLANT .

The <SC-body > is a LAMBDA expression of one argument.

This argument will receive a list of dotted pairs repre-

senting the bindings which have caused the SC to be invoked ,

e.g., ((-X.TREE) (-Y.HOT)). The invocation will cause the

LAMBDA expression to be evaluated (executed).

To illustrate , suppose that every time we discover that an

object is on a road and its temperature is hot, we want to assert

that the object is likely to be moving . We can create the

• SC to do this by

($PLANT ‘ (AND (+ 1 (ON -X ROAD))

(+ 1 (-X TEMPERATURE HOT)))

( LAMBDA (Z)

($STORE ‘ (LIKELY MOVING (CAR Z)))

TT’)

- —• ~~
— —

~r•-•—— —  ____________________________

41 
4 “

~~~~~ . ‘

~~~~ ~~~~~~~~~~~~~~~~~~

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ _____________ —


-
~~~

and the SC will become part of trigger tree TT.

A trigger tree is caused to react to a stimulus pattern

in two ways . The first is by calling the function $ACTIVATE :

($ACTIVATE (stimulus> <trigger-tree>).

The second way is by “applying ” the triggei tree to the

stimulus:

• (<trigger tree> <stimulus>),

since as a trigger tree is created , it is simultaneously

defined as a LISP function which can “apply itself’ to a

stimulus. For instance , the following two calls will cause

the trigger tree TT (as defined above) to react to the

stimulus (ON TRUCK ROAD):

($ACTIVATE ‘ (ON TRUCK ROAD) ‘TT), and

(TT ‘ (ON TRUCK ROAD)).

In the system as it now exists , $ACTIVATE does not actually

cause the invoked SCs to be run ; instead it constructs a

queue of calls where each call must be LISP EVALed in order

for each SC to be executed .

•  
_ _ _ _ _ _ _ _ _  _ _ _ _

14 
- -- —• -—

~~~~
-— - - ----

~~
——---—• -- -—— -— —

4- . -
~~~~~~~~~~

• - •
~.•.p p  - .1. - ‘ - .~ ‘

- - — — _______ _______



- -—
. -

5. Activity control

The higher level control of SCs is implemented via a

construct called a channel. Normally in LISP , when on~

function calls another , the arguments are sent directly to

the called function , and a returned value is sent directly

to the calling function . The channel provides an alternative

medium whereby one function can call another by posting a

request on the channel and sending arguments through the
I

channel. Similarly, a value returned by the called function

is sent to the calling function through the channel. This

causes the ordinarily private calling protocol between

functions to be “made public. ” Trigger trees may be attache.~

to the channel and react to signals passing along . A channel

may be visualized as follows :

F~ 
~ ‘L~ 

Signal 
_______

- 3.~~ 
Channel)

~ 
)
~ F~ l)\ /~ 

1 ~ H _
Trigger Tree Server

Function F1 mus t call function F2 via the channel. One or

more trigger trees , as well as other functions such as F3
in the display, may be attached to the channel , either as

“transparent” watchers which can ’t alter the signals , or

as “modifying ” watchers which can alter and even terminate

the signals.

‘4



- —

A channel has the following characteristics:

1. It has a one—dimensional “extent,” with directionality .

2. Other constructs (such as functions or trigger trees)

can be attached to it at tap points; there is no

limit to the number of tap points.

3. The left-right ordering of tap points is significant.

4. Each tap point is either a watcher (a trigger tree)

or a server (a function), and has mode either

transparent (non—altering of signals) or modifying

(altering).

5. Signals (either requests to a server or a response

from a server) may be injected on a channel at

arbitrary starting points and may propagate either

left or right.

In this manner , any given trigger tree may be attached to

any number of channels at any number of tap points.

There are three primary channel-related functions.

They are :

($CONNECT <object> <channel ’ (mode > <type>

<in—relation-to> <other—point>)

($DISCONNECT <object> <channel>)

($INJECT <signal> <server> (channel> <in-relation-to>

<other-point> <prop-direction>)

The arguments to these functions are defined as follows:

~~~ 1

a

-
•

~~~
•
~ 

- -—-- - - _ _ _ _  _ _ _ _ _  - -

4 - 
~

- •
~ ~.0~

•
~ - 

, —LI -
~~

• - -~~~ 
-



F - — — - -  —---------
~~
-----

~~~~~~
•.-—- —•------

~
—.-——---•-------—--- •---- _____________________

<object> := <watcner> (-~server>

<watcher> := <trigger tree name> (<LISP function name>

<server> := <LISP function name>

<channel> := <LISP atom>

<r.iode> := TRANSPARENT (~4ODIFYlNG

<type> := dATCHER(SERVER~RESPOi1SE-WATCHEi~

<in-relation-to> := BEFORE I AFTERIAT

<other—point> := Kwatcher~~(<server>

RIGHT-END LEFT-END

<signal> := <LISP S-expression >

<prop-direction > := LEFT (RIGHT

$CONNECT attaches a trigger tree or LISP function to any

point on the channel , i.e., “in-relation-to ” some “other-

point.” The value of <other-point> must be either some

existing tap point on the channel or one of the ends of the

channel. If <in-relation-to> is BEFORE or AFTER , then the

new attachment point is (respectively) to the left or right

of the existing tap point .

Imagine the signal on a channel propagating from some

starting point in some direction with finite speed . As it

passes by a tree of watchers , any relevant watchers in the

tree will be triggered and will eitner (1) allow the signal

to continue unaltered , (2) modify the signal and then allow

it to proceed , or (3) block the signal altogether. If the

signal reaches the requested server , the server will be run

4 ’
_

_ _ _ _ _

-

•

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ f _.__~~. r ~~~~~~~~~~~~~~~ ~~~~ - 
- - - - - ______ _____



~~~ —.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-- — - -- — - - ---- — •

unconditionally on the (possibly modified) signal. Its

response will be held while the signal is allowed to propagate

to the end of the channel , or until it is blocked. At that

time, the server ’s response will be injected on the channel ,

starting at the server ’s tap point. The response consists

of the LISP value the server returns. It will propagate

from the server ’s tap point back to the initial starting

point. On its way back , the response may pass over a set

of “response watchers” which , similarly, may alter or block

the signal.

To illustrate , consider the following channel configura-

tion which allows a population of SCs in trigger tree TT to

react to items entered into the data base :

($COi’INECT ‘$STORE ‘CH ‘TRANSPARENT ‘SERVER

‘AT ‘RIGHT-END)

($CONNECT ‘TT ‘Cli ‘TRANSPARENT ‘WATCHER

‘AFTER ‘$STORE)

i.e., attach the function $STORE (the data base storing

function) to channel Cli (creating this channel if it does

not already exist) as a transparent server at the right end

of the channel; then attach trigger tree TT to CH as a trans-
If

parent watcher after (to the right of) $STORE. Whenever

$STORE would have been called directly as in

($STORE ‘ (ON TRUCK ROAD)),

4

~~~

i. 

-

~~~~~~ 

•.

~~

__--
•

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
— --

~~~~~~ ____ ______-—


- -
~

-
~

- - . -

items will now be stored in the data base by placing them

as signals to $STORE on CII,

($INJECT ‘ (ON TRUCK ROAD) ‘$STORE ‘Cli

‘AT ‘LEFT-END ‘RIGHT),

i.e., inject the signal (ON TRUCK ROAD) to the $STORE server

on channel CU , starting at the left end of the channel and

propagating right.

Note that we have here the capability to implement a

context mechanism , for we can “turn off” or “turn on ” whole

trigger trees of SC5 by means of the $DISCONNECT and $CONNECT

functions . In this way , we can create SCs whose only purpose

is to turn on or off other trigger trees. For example ,

suppose we create two trigger trees , TT—APC and TT-TANK ,

both of which contain SCs which react to signals related to

properties of tanks and APCs, such as shape of the base ,

temperature , overall shape , speed of motion , etc . Suppose

it is determined that an object is a tank (or APC) and the

‘1 system is then directed to look more closely at this object

in order to make inferences. It would be very convenient

to “turn on” a tank (or APC) context and “turn off” an APC

(or tank) context as properties of the object are examined .

This could be accomplished with the following configur ation :

_____ -
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~

——----------- --- ---- -
~~~-- — — - --

Signal

_ _ _ _ _ _ _ _ _ _ _  

Channel

• I
• A 

_ _

I-. ~ ~ -~ $STORE

TT-Context TT-Tank TT-APC

TT—CONTEXT is a trigger tree containing SCs which turn on

or off the TT-TANK and TT-APC trigger trees. $STORE is the

data base storing function. This configuration can be

implemented as follows :

($CONNECT ‘$STORE ‘CHANNEL ‘TRANSPARENT

‘SERVER ‘AT ‘RIGHT-END)

($CONNECT ‘TT-CONTEXT ‘CHANNEL ‘TRANSPARENT

‘WATCHER ‘BEFORE ‘$STORE)

This will attach TT-CONTEXT and $STORE to the channel.

TT-CONTEXT will contain SC5 with the following type of code

in their bodies:

($CONNECT ‘TT-TANK ‘CHANNEL ‘TRANSPARENT

‘WATCHER ‘AFTER ‘TT-CONTEXT) , and

($DISCONNECT ‘TT-APC ‘CHANNEL).

It is then merely required to inject a signal such as the

followi ng:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~ ~~~



—

~~~

- —------ -

~

— --. -

~

.--------- -—-----—————--------

($INJECT ‘ (OBJECT37 TANK) ‘‘~STORE ‘CHANNEL

‘AT ‘LEFT-END ‘RIGHT)

to start the whole procedure.

A watcher need not be a trigger tree , it may also be

a LISP function of one argument. If the watcher is a

modifying watcher which is a function , the modified signal

to be propagated will be the value the function returns. A

trigger tree, however , may contain many computations, several

of which might be activated by a signal. The signal to be

propagated is determined in the following manner. Each

-
‘ trigger tree has an associated signal buffer. As a signal

H passes into a trigger tree, its signal buffer is initialized

to this original signal. Any SC may alter the signal by

replacing the contents of its tree ’s signal buffer with a

new value. The value in the buffer after all SCs have been

run is the signal to be propagated . When a watcher (either

a trigger tree or a function) modifies the signal to NIL,

the signal has been blocked and its propagation ceases.

The method of modifying the contents of a signal buffer

of a trigger tree is as follows :

(PUT <trigger tree name> ‘RESPONSE-BUFFER

<modified signal>).

$PLANT , the function used to create SC5 and plant them

in some trigger tree , will accept three optional arguments

in addition to the three mandatory ones (i.e., trigger

4

4 ----—- — - — - —-—--- - - ____________________

- ~~~~ -

-— _________________________


~~~~-— -——-~~~~~~~~~~~~~~~~~~~ -

pattern , SC body , and trigger tree name). The optional

arguments are the following :

1. A reference name, specified by the form

‘(N . <LISP-atom>). This will cause the SC to be

named, as in:

($PLAN T ‘ (LYING-ON ROAD TREE)

<some body>

‘TT3

‘(N . FALLENTREE))

2. A run-queue priority, either FRONT or REAR , specified

by the form ‘(P - IFRONT , REAR}). This will indicate

to $ACTIVATE how to queue up the SC for subsequent

running ; either place it at the FRONT of the queue

(the default) or at the REAR.

3. A run condition, specified by the form ‘(R . <condition-

builder>), where <condition-builder> is an S-

expression which will be EVALed immediately prior

to queueing an activated SC for running . The SC will

not be permitted to run until the condition is true ;
I

it will simply be placed at the end of the queue.

It is slightly different for an SC in a trigger tree

attached to a channel. In this case, the SC will be

run af ter a succes sful invoc ation on ly if its run

condition EVALs non-NIL at the time the tree is

activated by a passing signal; SCs whose run conditio~s

4 1 -

- ~~~~~~~~~~~~~~~~~~ - 

-__
- ~~~~-- - —~~~~~~~~~~~~~

- - ~~~~~~~~~~~~~~~~~~~



- :

are not satisfied at the time are discarded . If

the run condition is omitted in the $PLANT function ,

the default value is TRUE.

H

~
t. -. - — ----  - - 

- 
1 -

~ u~~~~:~ 
- -

__________ 
____________  

______________________________  ——



r - - -
~~~~~~~~~~

-
~~~~~~~

-
- -~~

- --
~~~~~~~~~

- ----- -- -— - -—

6.. Representing numerical quantities

There is a special problem which arises with data base

entries containing numbers. When the data base system

stores an item (i.e., a nested n-tuple), it creates a back-

pointer to the item on the property list of each atom appear-

ing in the item. However , numeric atoms in LISP do not have

property lists. This problem has been solved on the systems

existing on the UNIVAC 1100 machines by prefixing all numbers

with a # , thus making them non-numeric. A parallel set of

arithmetic functions have been created for these forms.

The data base system on the PDP 11/45 has a different

solution. If an item containing numbers is to be stored ,

there simply is no back-pointer to the item created for the

numeric atoms. Therefore an item cannot be retrieved by

specifying only numbers in the item . For example, suppose

we call

($STORE ‘ (TANK TEMPERATURE 100))..

If we then call

($FETCH ‘ (—X —Y 100))

there will be no response , since there is no pointer from

the numer ic atom , 100, to the item. If however , we call

($FETCH ‘ (-X TEMPERATURE 100)), or

($FETCH ‘ (TANK TEMPERATURE -X)),

the appropriate item will be found in the data base.

4

.
~~~~~ 

~~~~~~~~

__________ — — ____

r -

~~~~~~~~~~~~~ 
—

~~~~~
-

Floating point numbers are handled by LISP in exactly

the same manner. However , there is a slight inconvenience

-~ when typing in a floating point number under the ULISP

interpreter on the PDP 11/45. The user must first load the

-~ “floating point package ” in order to obtain access to a

floating point READ macro. Every floating point number

which is then typed in must be prefixed with a %.

F ~~

-

~ _____________
~~;~~

- : t ~
;
~~ _ _

T~~~~~~~_~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~J.iITLT~~ ___________

—- ~~ --- -- —--- -- ~~~~~
-
~~~~
--

7. Accessing images

The ULISP system on the PDP 11/45 has facilities for

handling arrays. Since arrays offer the most efficient way

to store images, the basic image accessing capability is

• already built into ULISP. Upon loading the arithmetic

package, a ful—l image handling capability is provideth It

may be more appropriate to use only one-dimensional byte

arrays with indices computed by a function rather than two-

dimensional arrays . The 2—D arrays create extraneous nodes

for pointers and thus use more memory space than l-D arrays.

While it is desirable from an image processing point of

view that ULISP interact with other languages on the PDP

11/45 under UNIX , there is little hope for interaction with

FORTRAN. However, communication with the programming language

C is feasible.

I

t -

4

_ _ _ _  

~~~~~ ITITTT


_ _ _ _ _ _— —_~~~~ - - - -_~~~~-~~~~~~~~~~~ -~~~- ---- - —- -- -- -~~~-- - -

~~~~~~~~ 
- -
~~:~~~

-
::: -

~ ~

--

~~~~

8. Conclus ion

The data base plus inferencing system described here

provides a foundation on which to build an image understanding

system. Although the system has not been designed for

efficient utilization of either memory storage or CPU time ,

it will prove very useful for constructing and experimenting

with various control structures for image understanding .

4

4

1

— --~~~~~~~~

~ -—~~~~~~~~ - - --- --~~~ 4~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~ . — --~ -- ---~~-— --.-~-- --- -— ----— - - - -

P ~~~~~~~~~~~ ‘- ---— — - -— --— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - - --------—.----—--—-— - -

References

1. C. Rieger , Spontaneous Computation in Cognitive Models ,
TR-459 , Dept. of Computer Science , University of Mary-

- land , College Park , Maryland , July 1976.

• 2. R. L. Haar , A Fuzzy Relational Data Base System , TR-586 ,

• Computer Science Center , University of Maryland , College
Park , Maryland , September 1977.

3. R. L. Kirby , ULISP for PDP-lls with Memory Management ,
TR-546 , Computer Science Center , University of Maryland ,
College Park , Maryland , June 1977.

I

‘4

-- - ~~~~~~~— ~~~~~~~~~~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _

r -

UNCLASSIFIED
SECUR ITY CLASSIFICATION OF THIS P A GE (When Data Ent.r.d)

_ _

REPADT DnC E~~~~~~kI PA’ E R E A D INSTRUCT I ONS
~~ W~% ~ ~~~~~~~~~ ~~ BEFORE COMP LETING FORM

I. REPORT N U M B E R 2. GOVT ACCESSION NO. 3- RE C IPIENT S C A T A L O G N U M B E R

4, T ITL E (~~‘d S~bIiU.)
S. TYPE OF RE POR T 6 PER IOD COVERED

A SYSTEM FOR CONTROL STRUCTURE IMPLEMEN- Technical
TATION FOR IMAGE UNDERSTANDIN G

~~. P E R F O R M I N G O R G R E P O R ~~~M 1JMBER
/ T R - 6 4 6

7, AU THOR(s)
-

6 C O N T R A C T OR G R A N T NLIMBER :a)

Mar t in Herman DAAG53-76c 0138

9 P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D ADDRESS 10. P RO G R A M ELEMENT. PROJECT . TASK
Computer Science C t r . A R E A & W O R K U N I T N U M B E R S

U n i v . of Maryland /

College P k . , MD 2 0 7 4 2
II C O N T R O L L I N G OFFICE N A M E A N D ADDRESS 12. REPORT DA T E

7

’

U. S. Army Nigh t Vision Lab . March 1978
Ft . Belvoir , VA 2 2 0 6 0 ~~~- N U M B E R OF P A G E S

14 M O N I T O R I N G A G E N C Y N A M E & ADORES S (i1 differen t Iron, Controlling Office) IS. S E C U R I T Y CLASS. (of rhIs report)

U n c l a s s i f i e d

15. D E C L A S S I F I C A T I O N D O W N G R A D I N G
—

SC H E D U L E

15. DISTRIB U TION S T A T E M E N T (of thIs Report)

Approved for public release; d i s t r ibu t ion un l imi t ed .

Il. D I S T R I B U T I O N S T A T E M E N T (of th, abstract ent,,.d in Block 20, ii d ifferen t from Report)

‘1
13. S U P P L E M E N T A R Y NOTES

19, KEY WORDS (Continu, on rev.,,. aid, if nec.ssary and Identify by block number)

Image understanding
Control structures
Data bases
Inferencing

20. A B S T R A C T (Continu, on revere , aid. If necessary and identify by block numb.,)

~~~~~~ data base system with inferencing capabilities is
described . This system , developed by C. Rieger , is investigated
as a tool in support of control structure implementation for
image understanding.

DD jAN 73 1473 EDIT ION OF 1 NOV 63 IS OSSOLETE 
U N C L A S S I F I E D

SECUR ITY CLASSIFICA TION OF THIS W A G E  (II5I~st Data EntarCd)

4 --— — - 

~~~~~~
- _ — _

~~~
-- - ---——--

~
——  

_ _ _ _  —

, 
-~~~~

•-
~~~ - 

- .

~~~~~~;‘ ç :~i.

~~~~~~~~~ 
- - .

~~~~~~~~~~~~ — - . --~~~~~~~~~ 
~~~~~~~ - -


